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WATERSHED-SCALE FATE AND TRANSPORT OF BACTERIA

D. A. Chin,  D. Sakura‐Lemessy,  D. D. Bosch,  P. A. Gay

ABSTRACT. The added dimensionality provided by using multiple models to predict the fate and transport of bacteria at the
watershed scale were investigated. Both HSPF and SWAT were applied to the 15.6 km2 catchment K of the Little River
Experimental Watershed (LREW) in Georgia. Over the seven‐year period from 1996 to 2002, SWAT provided a more accurate
description of fecal coliform concentrations, with an NSE of 0.73 compared to 0.33 for HSPF. For this particular watershed,
the SWAT process equations are more representative of the watershed‐scale fate and transport of bacteria than the HSPF
process equations. Based on this comparative analysis, it can be inferred that elevated levels of fecal coliform in the receiving
stream are primarily due to in‐stream sources. This source characterization could not be achieved by using only the HSPF
model, which indicates a much greater contribution from groundwater and terrestrial nonpoint sources. A model‐averaging
approach in which a weighted average of the HSPF and SWAT predictions are used to predict bacteria concentrations in the
receiving stream demonstrates that model weights can be determined such that the NSE of the combined models will be greater
than either of the models taken individually. However, in the present case, the marginal improvements in NSE obtained through
this integration were small.
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he leading cause of impairment of rivers and
streams in the U.S. is excessive levels of pathogen
indicator bacteria (USEPA, 2008), and the most
common indicator bacteria in freshwater bodies are

fecal coliform and Escherichia coli (E. coli). Federal regula‐
tions require that all states monitor and assess public water
bodies within their borders, identify those that are impaired,
and determine the limiting contaminant loadings that would
be required for the impaired waters to meet their applicable
water‐quality standards; these limiting loadings are called to‐
tal maximum daily loads (TMDLs). Implementation of load‐
ing reductions to comply with adopted TMDLs generally
requires identification of the likely sources of contamination
and estimation of the quantitative relationship between con‐
taminant source loadings and contaminant concentrations in
receiving waters. Since contaminant sources causing impair‐
ments are generally a combination of nonpoint and point
sources, watershed‐scale fate and transport models are par‐
ticularly useful in identifying likely contaminant sources and
quantifying the relationship between source loadings and
contaminant  concentrations in receiving waters. The most
commonly used watershed‐scale fate and transport models
for TMDL applications are HSPF (Bicknell et al., 2001) and
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SWAT (Neitsch et al., 2005), with HSPF more commonly
used in urbanized watersheds and SWAT more commonly
used in agricultural watersheds, although both models can be
used in most watersheds.

An essential component in utilizing watershed‐scale fate
and transport models is accounting for predictive uncertainty,
which can be attributed to a combination of parameter uncer‐
tainty, structural uncertainty, and data uncertainty. In most
models, structural uncertainty is dominant and limits the
minimum predictive uncertainty that can be achieved by any
given model. Since the genesis of structural uncertainty in
any model is the inadequacy of the process equations incor‐
porated in the model, the only way to reduce structural uncer‐
tainty and lower the limit of predictive uncertainty is to use
a different model with more accurate process equations. A
model‐averaging  approach (Claeskens and Hjort, 2008; Aja‐
mi et al., 2006) can be particularly useful in reducing struc‐
tural uncertainty relative to the single‐model approach,
where the weights allocated to different models are adjusted
depending on the predictive uncertainty of the individual
models. The weighted‐average model will likely have less
predictive uncertainty than if only one model was universally
used. A second benefit of the multi‐model approach is that
the process equations incorporated in the better‐performing
model are presumably a more accurate representation of the
fate and transport processes in the watershed, and provide
valuable insight into and quantification of the sources and
movement of contaminants within the watershed.

This article demonstrates the use of the multi‐model ap‐
proach in which both HSPF and SWAT are applied to predict
the fate and transport of indicator bacteria in a particular wa‐
tershed, and the prediction results are used to identify the
dominant fate and transport processes within the watershed.
The reduction in predictive uncertainty using the two‐model
approach is also quantified, and conclusions are drawn re‐
garding the efficacy of using the two‐model approach to iden‐
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tify source‐loading reductions that would be effective in
implementing  TMDLs.

PROCESS EQUATIONS
Both HSPF and SWAT codes contain hydrology and

water‐quality components. In developing water‐quality mod‐
els using these codes, it is standard practice to first calibrate
the hydrology component of the model by adjusting the
hydrologic process parameters until model streamflow pre‐
dictions agree with observed streamflows to an acceptable
degree. The second step is to calibrate the water‐quality com‐
ponent by adjusting the water‐quality process parameters of
the model until the model tracer concentration predictions at
specified locations in streams agree with observed concentra‐
tions to an acceptable degree. The hydrologic process equa‐
tions in HSPF and SWAT are fundamentally different, with
the most notable external difference being that HSPF simu‐
lates the rainfall/runoff process at hourly time steps, while
SWAT simulates the rainfall/runoff process at daily time
steps. Many previous studies have documented the compara‐
tive hydrologic process equations and performances of HSPF
and SWAT (e.g.,�Van Liew et al., 2003). Bacterial fate and
transport processes incorporated in HSPF and SWAT codes
are also fundamentally different, thereby increasing the like‐
lihood that reduction in structural uncertainty can be
achieved using a multi‐model approach. A comparative anal‐
ysis of the HSPF and SWAT process equations for modeling
the fate and transport of bacteria can be found in Benham et
al. (2006), and a brief review of these processes with some
supplementary material is provided here.

In both HSPF and SWAT codes, bacteria are added to hy‐
drologically homogeneous land segments within the wa‐
tershed at a specified rate that can vary with time. In HSPF,
the bacteria loading rate is specified directly (cfu ha-1 h-1)
and can be either constant or vary monthly, while in SWAT
the loading is specified as the product of the bacteria content
of manure (cfu g-1) and the manure loading rate (kg ha-1 d-1),
which can be either constant or vary daily. In HSPF, deposited
bacteria can be transported by either direct entrainment in
overland flow or by association with sediment contained in
overland flow, in which case a potency factor (Chin, 2006)
must be specified. In SWAT, bacteria are partitioned into both
soluble and sorbed phases using a linear isotherm of the form:

 S = kpc (1)

where S is the sorbed bacteria density (cfu g-1), kp is the parti‐
tioning coefficient (mL g-1), and c is the bacteria concentra‐
tion in solution (cfu mL-1) within the top 10 mm of soil.

In reality, bacterial transport is associated with both dis‐
solution in overland flow and sorption onto sediments. How‐
ever, significant uncertainty in modeling both bacterial
partitioning and sediment transport has caused most models
to treat bacteria transport as being entirely associated with
dissolution in surface runoff (e.g., Paul et al., 2004; Jamieson
et al., 2004). This approach is adopted in this article by speci‐
fying the potency factor (in HSPF) and partition coefficient
(in SWAT) both equal to zero. This formulation does not ne‐
glect bacteria transport by sediment attachment, but simply
assumes that such transport can be described by an effective
dissolution rate. HSPF indirectly simulates the dieoff of
bacteria on the land surface by limiting the amount of accu‐

mulated bacteria, while SWAT explicitly simulates the dieoff
of sorbed and solution bacteria on the land surface using
Chick's law, which can be expressed in the form:

 Nt = N0 exp(-kd t ) (2)

where Nt is the number of bacteria at time t (cfu), N0 is the
initial number of bacteria (cfu), and kd is a net decay constant
that varies with temperature.

HSPF tracks a single type of bacteria deposited on the
ground, while SWAT divides bacteria into persistent and less‐
persistent categories, and can also simulate the deposition
and washoff of bacteria on foliage. During each time step
(��t), the amount of solution bacteria released (�Mr) from the
soil solution into the surface runoff is given by:
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where Ms is the amount of bacteria in solution in the soil‐
storage layer at the beginning of the time interval, �Q is the
runoff within the time interval (cm), and k1 and k2 are release‐
rate constants (cm-1).

Rainfall that infiltrates into the soil can contribute to
streamflow via interflow and outflow from the shallow
groundwater. However, a major difference between codes is
that HSPF allows specification of constant or monthly varia‐
tions in bacteria concentration in the interflow and shallow
groundwater inflow to streams, while SWAT requires that
subsurface bacteria concentrations be zero. Experiments on
bacteria transport in soils and groundwater usually conclude
that bacteria move in the subsurface, and that temporal or per‐
manent saturation allows indicator bacteria to move quite far
along preferential pathways (Benham et al., 2006). In addi‐
tion to bacteria transported to streams by surface runoff, both
HSPF and SWAT allow the direct input of bacteria into stream
segments as either point sources or direct nonpoint sources,
with HSPF allowing hourly variation of loading (cfu h-1) and
SWAT determining loading as the product of a specified daily
source flow (m3 d-1) and source concentration (cfu m-3).
Loadings from terrestrial and direct sources are added togeth‐
er to give the total flux of bacteria into the receiving stream
segment, and each segment is simulated as a completely
mixed reactor with first‐order decay.

The relative validity of the above watershed‐scale fate and
transport process equations can only be inferred by compar‐
ing the performance of models based on these fundamentally
different process equations, and associating the more accu‐
rate process equations (for a particular watershed) with the
better‐performing models. Such an intercomparison within
the Little River Experimental Watershed is described in this
article, and the implications of these results on reducing pre‐
dictive uncertainty and in developing implementation plans
for TMDLs are subsequently discussed.

LITTLE RIVER EXPERIMENTAL WATERSHED
Hydrologic monitoring in the Little River Experimental

Watershed (LREW) in south‐central Georgia is conducted by
the USDA‐ARS Southeast Watershed Research Laboratory
(SEWRL) in Tifton, Georgia, and the location of the LREW
within the state of Georgia is shown in figure 1. The LREW
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is centered at approximately 31.61° N and 83.66° W and cov‐
ers an area of approximately 334 km2. The LREW is instru‐
mented to measure rainfall and streamflow within the
primary watershed and the seven nested subwatersheds, as
shown in figure 1, where the subwatersheds are identified by
their pour points (M, K, J, I, F, N, O, B) and the subwatersheds
range in size from 3 to 115 km2. Overall, the LREW lies with‐
in an area of broad floodplains, river terraces, and gently
sloping uplands. Most land‐surface slopes are less than 5%,
although some valley slopes range from 5% to 15%. Streams
in the LREW have channel slopes ranging from 0.1% to 0.4%
(Bosch and Sheridan, 2007). The LREW contains sandy soils
underlain by limestone, and a seasonally dependent shallow
phreatic aquifer exists throughout the watershed. Physio‐
graphically, the LREW is located in the Tifton Upland, and
stratigraphically the subsurface consists of Quartenary sand
overlaying the parent Miocene Hawthorne Formation (As‐
mussen, 1971). The depth of the surficial alluvium ranges
from 2 m in the headwater streams to about 6 m at the lower
end of the watershed, and the hydrology is typical of that
found in the southern Coastal Plain, where surface materials
have high infiltration rates, low surface runoff, and high
groundwater inflow to streams.

There are 46 continuously recording rain gauges covering
the LREW and the surrounding area, and these gauges are
spaced approximately 2.4 km apart in the upper watershed
and 4.8 km apart in the lower watershed (Bosch and Sheridan,
2007). Most rain gauges consist of TE525 tipping‐bucket
gauges (Texas Electronics, Inc., Dallas, Texas) with mini‐
mum measurement precision of 0.254 mm, accuracy of
±0.5�mm h-1, and a recording interval of 5 min. The present
study focuses on catchment K, which is shown in figure 1 and
covers an area of approximately 16.7 km2. Hourly rainfall in
catchment K was calculated from 5 min measurements at rain
gauge RG43 (UTM 3513276 m N, 242618 m E) located
approximately  in the center of catchment K. The correlation

Figure 1. Little River Experimental Watershed, Georgia.

of the upscaled daily rainfall at RG43 with the catchment‐
averaged daily rainfall provided by SEWRL was 0.98, which
provided confidence that RG43 can be used to characterize
the hourly catchment‐averaged rainfall.

Other meteorological data available for catchment K in‐
clude hourly solar radiation, cloud cover, air temperature,
dew point, and potential evapotranspiration. Data collected
at Met station 747810 located in Valdosta, Georgia, approxi‐
mately 70 km from the LREW were used to describe these
climatic variables. Although this distance is not ideal, it was
deemed tolerable since these latter climatic variables are not
expected to vary significantly over this length scale and are
of secondary importance to rainfall in simulating the rainfall/
runoff process in the catchment.

Flow exits catchment K via a third‐order stream, and flow‐
rates from the catchment are measured by a compound rec‐
tangular weir with a centered V notch (Bosch and Sheridan,
2007). The rectangular weir has a crest length of 17.8 m, a
V‐notch depth of 44.2 cm with 10:1 side slopes, and is de‐
signed for a 25‐year maximum flowrate of 16.5 m3 s-1. The
catchment K outlet coincides with a four‐barrel box culvert
that provides roadway cross‐drainage, and the flow‐
measurement weir is located between the upstream wing
walls, approximately 3 m upstream from the culvert. Water‐
surface elevations upstream and downstream of the flow‐
measurement weir were measured to the nearest 2 mm every
5 min with a pressure transducer and recorded by a digital
data logger. The rating curve for the flow‐measurement
structure was developed based on laboratory model testing
and field measurements (Bosch and Sheridan, 2007).

HSPF MODEL
The USEPA BASINS system was used to delineate catch‐

ment K based on the National Elevation Dataset (NED) and
the specified catchment outlet. The catchment area delin‐
eated using this digital elevation model was 15.6 km2,
compared to 16.7 km2 commonly associated with catchment
K (Bosch and Sheridan, 2007). For consistency in using the
NED for stream delineation, a catchment area of 15.6 km2

was used in the model simulations. The regional land‐use GI‐
RAS layer indicates that the catchment consists of 7.1 km2 of
agricultural  land (45%) and 8.5 km2 of forest land (55%).
This proportion of agricultural land (45%) in the GIRAS da‐
tabase is higher than has been reported by Bosch et al. (2006)
at 35% to 40% and Feyereisen et al. (2007a) at 37%. The rela‐
tionship between stage and runoff in the stream segment
(FTABLE) was generated using the implicit channel geome‐
try in BASINS (Technical Note 1, 2007). The seven‐year cal‐
ibration period for the model was from 2 January 1996 to
28�December 2002, during which time hourly flow measure‐
ments and a total of 53 instantaneous measurements of fecal
coliform (FC) concentration at the catchment outlet were
available.  Analysis for fecal coliform was conducted using
the EC Medium test, which utilizes a membrane filtration
technique and mFC media to identify fecal coliform colonies
(APHA, 1995). Precision and accuracy of the FC analyses
were documented using sample duplicates, laboratory
blanks, and National Institute of Standards and Technology
(NIST) traceable reference standards. All of the duplicated
samples deviated by less than 25% from the calculated mean,
with over 75% deviating by 10% or less from the mean.
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A three‐step approach was used to calibrate the hydrology
and water‐quality components of the model. The steps fol‐
lowed were: (1) identify the model parameters that potential‐
ly influence the output variable of interest; (2) sequentially
maximize the conditional likelihood of each parameter; and
(3) repeat step 2 until there are no changes to maximum‐
likelihood parameter values.

Parameters having a significant influence on surface run‐
off in HSPF models are commonly taken as (Van Liew et al.,
2003): infiltration rate (INFILT), lower‐zone nominal stor‐
age (LZSN), ratio of maximum to mean soil infiltration ca‐
pacities (INFEXP), exponent that determines how much a
deviation from nominal lower‐zone storage affects the in‐
filtration rate (INFILD), fraction of groundwater that is lost
to the deep aquifer (DEEPFR), active groundwater recession
coefficient (AGWRC), and the interflow recession coeffi‐
cient (IRC). Other potentially influential variables include
the upper‐zone nominal storage (UZSN), groundwater reces‐
sion flow parameter (KVARY), interflow inflow parameter
(INTFW), and the weighting factor for hydraulic routing
(KS). Following the calibration procedure described in detail
by Chin (2009), all of the aforementioned parameters were
varied sequentially to determine the maximum conditional
likelihood, where the conditional likelihood (L) for parame‐
ter �i is given by:
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At each step in the calibration sequence, all parameters
values except one (�i) were fixed, and the maximum condi‐

tional likelihood value of that variable (�i) was found itera‐
tively. This parameter value was then fixed at its maximum
conditional likelihood value, and the maximum conditional
likelihood value of the next parameter was found. This pro‐
cess was repeated for subsequent parameters, cycling
through all parameters until the parameter set converged to
the maximum‐likelihood parameter set shown in table 1.

This iterative approach converged to the maximum‐
likelihood parameter set within three cycles and was auto‐
mated by developing control software to run the iterations
without stopping. It is recognized that the maximum‐
likelihood parameter set might not be unique due to correla‐
tions between model parameters. In such cases where
significant parameter correlations exist, alternative
maximum‐likelihood  parameter sets could be identified by
using different initial parameter estimates (Chin, 2009). Us‐
ing the maximum‐likelihood parameter set, the predicted and
measured flows are compared in figure 2a for a three‐year
time window within the seven‐year calibration period
(1996‐2002). The three‐year time window in figure 2 and
subsequent figures was selected primarily to facilitate il‐
lustration, since it is long enough to show a significant seg‐
ment of modeled results versus measured data, and yet still
discriminate between daily measurements. Quantitative
comparison between the measured and predicted flows is
most easily done using the Nash‐Sutcliffe efficiency (NSE),
defined as:
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where y   is the mean of the measurements.
For the seven‐year period of calibration, the NSE is 0.87

for daily averaged flows and 0.89 for monthly averaged
flows, and the discrepancy in the cumulative outflow volume
is 7%. Collectively, these metrics indicate that the model pro‐
vides excellent agreement between predictions and measure‐
ments at both daily and monthly time scales.

Table 1. HSPF maximum likelihood parameters.
Parameter Value Units Description

Hydrology AGWRC 0.95 d‐1 Basic groundwater recession rate
DEEPFR 0.05 ‐‐ Fraction of groundwater lost from the system
INFILT 0.86 mm h‐1 Infiltration capacity index
INFEXP 2.0 ‐‐ Exponent in the infiltration equation
INFILD 2.0 ‐‐ Ratio between maximum and mean infiltration
INTFW 27 ‐‐ Interflow inflow parameter

IRC 0.51 d‐1 Interflow recession parameter
KVARY 0. cm‐1 Groundwater recession flow parameter
LZSN 6.1 cm Lower zone nominal storage
UZSN 64.5 mm Upper zone nominal storage

KS 0.58 Weighting factor for hydraulic routing

Water quality ACQOP 0.25[a], 1.45[b] × 108 FC ha‐1 d‐1 Rate of accumulation of FC
FSTDEC 2.09 d‐1 First‐order decay rate of FC in stream

IOQC 1423 cfu/100 mL Interflow FC concentration
PSRC 17.4 × 109 FC d‐1 Mass flux from direct source

SQOLIM 8.25 × 1011 FC ha‐1 Maximum surface storage of FC
WSQOP 0.94 mm h‐1 Rate of surface runoff that removes 90% of FC in 1 h

[a] Agricultural land.
[b] Forest land.
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Figure 2. Comparison of measured and simulated flows.

The mechanism of fecal coliform (FC) transport from the
land surface to streams is assumed to be by both surface run‐
off and subsurface transport by interflow, with bacteria con‐
centrations in the groundwater assumed to be zero. In
addition, contributions by distributed in‐stream sources are
accounted for by direct nonpoint source inputs. The parame‐
ters that contribute to FC fate and transport were identified
as: the rate of terrestrial accumulation of FC (ACQOP), the
storage limit of FC on the land surface (SQOLIM), the rate
of surface runoff that removes 90% of stored FC per hour
(WSQOP), interflow FC concentration (IOQC), FC mass flux
from a direct nonpoint source (PSRC), and the first‐order
decay rate of FC in the receiving stream (FSTDEC). These
parameters were varied sequentially using the same approach
as for the hydrology calibration, with the likelihood measure

given by equations 4 and 5, and y is taken as the set of FC mea‐
surements. The maximum‐likelihood parameter set is listed
in table 1.

A particularly appealing feature of the calibration scheme
used in this study is that the conditional likelihood distribu‐
tion of each parameter can be determined for the maximum‐
likelihood parameter set, as shown in figure 3a. These curves
show how the likelihood of each parameter changes as it var‐
ies between one‐half and twice its optimal value. The results
in figure 3a provide a direct illustration of the sensitivity of
the model output to that parameter, showing that the model
predictions are relatively insensitive to values of SQOLIM
(=�maximum accumulation of bacteria) and most sensitive to
IOQC (= interflow bacteria concentration).
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Figure 3. Marginal likelihood functions of model parameters.

Using the maximum‐likelihood parameter set, the pre‐
dicted and measured FC concentrations in the receiving
stream are compared in figure 4a for the same three‐year time
window used to compare flows in figure 2a. For the seven‐
year calibration period, the Nash‐Sutcliffe efficiency (NSE)
is 0.33, which is comparable to the performance of HSPF
models reported in other studies. For example, in using HSPF
to develop a TMDL implementation plan in a similar wa‐
tershed in Georgia (Georgia DNR, 2002), the NSE was found
to be 0.24. It is debatable whether it is appropriate to use the
NSE without normalizing the FC values, since the FC con‐
centration can vary by orders of magnitude. However, the
conventional NSE used in this study is desirable since it gives
more weight to matching high FC values, which normally de‐
termine impairment designations, and is the benchmark for
comparison with other studies. The relatively low agreement
between measurements and observations could be attributed
to a variety of factors. For example, the comparison is be‐
tween instantaneous FC measurements and predictions that
are both stream averaged and daily averaged, while, in real‐
ity, there are likely to be significant within‐stream and intra‐
day variations in FC concentrations.

Figure 4. Comparison of measured and simulated bacteria concentra‐
tions.

SWAT MODEL
The ArcSWAT system (version 2.1) was used to delineate

catchment K using the same elevation, land use, and soil da‐
tabase as used in the HSPF model. A minor modification was
that the 1 arc‐second National Elevation Dataset (NED) used
in SWAT had to be downloaded from the USGS National Map
Server since the NED built into BASINS was not readily
transferable to ArcGIS. For consistency with HSPF, the
SWAT model of the watershed contained two hydrologic re‐
sponse units (HRUs): a 7.1 km2 agricultural‐use HRU and an
8.5 km2 forest‐use HRU.

The parameter that has the most influence on surface run‐
off in SWAT is the runoff curve number for moisture condi‐
tion 2 (CN2) (Van Liew et al., 2003). For subsurface
response, the most influential parameters that are commonly
cited (e.g., Van Liew et al., 2003; Feyereisen et al., 2007b) are
the parameter that controls the amount of water that moves
from the shallow aquifer to the root zone (GW_REVAP),
threshold depth of water in the shallow aquifer for movement
to the root zone (REVAPMN), threshold depth of water in the
shallow aquifer required for return flow to occur to the stream
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Table 2. SWAT maximum‐likelihood parameters.
Parameter Value Units Description

Hydrology ALPHA_BF 0.75 d‐1 Base flow recession constant
CH_K2 132.5 mm h‐1 Effective hydraulic conductivity
CH_N2 0.044 ‐‐ Manning's n in main channel

CN2 35[a], 61[b] ‐‐ Curve number for moisture condition II
GW_DELAY 18.5 d Groundwater delay time

GWQMN 0.11 mm Threshold depth in shallow aquifer for return flow
GW_REVAP 0.51 ‐‐ Groundwater “revap” coefficient
RCHRG_DP 0.0 ‐‐ Deep aquifer percolation fraction
REVAMMN 0.11 mm Depth in shallow aquifer for percolation to deep aquifer

Water quality BACTKDQ 0.53 m3 Mg‐1 Bacteria soil partitioning coefficient
BACTMIX 5.6 10 m3 Mg‐1 Bacteria percolation coefficient

BCNST 3.55 × 108 cfu/100 mL Direct‐source concentration, flow = 0.01 m3 d‐1

CFRT_KG 2.0[a], 22.1[b] kg ha‐1 d‐1 Application rate at 105 cfu g‐1

WDPRCH 2.33 d‐1 Bacteria dieoff coefficient in streams
WDPQ 0.0 d‐1 Bacteria dieoff coefficient in soils

[a] Agricultural land.
[b] Forest land.

(GWQMN), and the fraction of percolation from the root
zone that recharges the deep aquifer (RCHRG_DP). Other
potentially influential variables include the base flow reces‐
sion constant (ALPHA_BF), groundwater delay time
(GW_DELAY), effective hydraulic conductivity of main
channel (CH_K2), and Manning's n of the main channel
(CH_N2). Following the same procedure used in calibrating
HSPF, the maximum‐likelihood parameter set was deter‐
mined and is given in table 2.

The predicted and measured flows are compared in fig‐
ure�2b for a three‐year time window within the seven‐year
calibration period (1996‐2002). For the period of calibration,
the Nash‐Sutcliffe efficiency is 0.65 for daily averaged flows,
0.88 for monthly averaged flows, and the discrepancy in the
cumulative outflow volume from the watershed is 1%. Col‐
lectively, these metrics indicate that the model provides fair
agreement with measurements on daily time scales, with excel‐
lent agreement on monthly time scales (Moriasi et al., 2007).

The parameters that contribute to FC fate and transport
were identified as: bacteria application rate (CFRT_KG),
bacteria soil partitioning coefficient (BACTKDQ), bacteria
percolation partitioning coefficient (BACTMIX), dieoff fac‐
tor for bacteria in streams (WDPRCH), dieoff factor for
bacteria in soils (WDPQ), and direct nonpoint source flux
(BCNST). These parameters were varied sequentially using
the same approach as for the hydrology calibration, with the
likelihood measure taken as the NSE for estimating the 53 FC
measurements during the seven‐year calibration period. The
maximum‐likelihood  parameter set was determined and is
listed in table 2. The conditional likelihood distributions of
the parameters influencing FC fate and transport are shown
in figure 3b for parameters varying between one‐half and
twice their optimal value. It is evident that the predictions are
sensitive to all parameters, with the greatest sensitivity to the
bacteria loading rate (CFRT_KG) and least sensitivity (al‐
though still moderately sensitive) to the bacteria percolation
partitioning coefficient (BACTMIX). Using the maximum‐
likelihood parameter set, the predicted and FC concentra‐
tions in the receiving stream are compared in figure 4b for the
same three‐year time window used to compare flows in fig‐
ure�2b. For the entire calibration period, the NSE for predict‐
ing fecal coliform is 0.73.

COMPARISON OF MODELS
The performance of the HSPF and SWAT models as mea‐

sured by their NSE values are compared in table 3. These re‐
sults clearly show that both HSPF and SWAT perform well in
predicting monthly averaged flows, with HSPF performing
much better in predicting daily averaged flows. This is not a
surprising or a new observation, since HSPF uses hourly time
steps compared with the daily time steps in SWAT, and hence
HSPF is better able to resolve the response of the catchment
to storms with subdaily durations. These results can be fur‐
ther contrasted with those reported by Feyereisen et al.
(2007b), who used SWAT to simulate the hydrology of catch‐
ment K for the 1997‐2002 subperiod. Feyereisen et al.
(2007b) found NSEday = 0.56 and NSEmonth = 0.88, while the
present model applied to this same time period gives
NSEday�= 0.65 and NSEmonth = 0.89. The superior perfor‐
mance of the present SWAT model for daily time steps is like‐
ly a result of a more comprehensive calibration process
involving the sequential identification of conditional
maximum‐likelihood  values of the parameters.

In addition to the consensus result that HSPF produces
much better agreement with daily averaged flows than
SWAT, the contributions of surface runoff, interflow, and
groundwater inflow to the receiving stream indicated by
HSPF are also markedly different than SWAT, with direct im‐
plications for simulating the fate and transport of contami‐
nants contained in these flow components. For the simulation
period (1996‐2002), HSPF gives the relative contributions of
surface runoff, interflow, and groundwater inflow as 2%,
60%, and 38%, while SWAT gives the relative contributions
as 13%, 4%, and 83%.

With respect to predicting bacteria concentrations at the
watershed outlet, the results shown in table 3 indicate that
SWAT performs better than HSPF, with an NSE of 0.73 versus
0.33. These results suggest that the bacteria fate and transport
process equations incorporated in SWAT provide a better rep‐
resentation of the fate and transport of bacteria in this particu‐
lar watershed. In the context of the present watershed, a
significant difference between HSPF and SWAT is that
SWAT requires the concentration of bacteria in the interflow
and shallow‐aquifer inflows to the stream segment be equal
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Table 3. Performance comparison of HSPF and SWAT models.

HSPF SWAT
aHSPF 

+ (1 - a)SWAT

Hydrology
NSEmonth 0.89 0.88 0.90
NSEday 0.87 0.65 0.88

Water quality
NSEall 0.33 0.726 0.730

to zero, whereas HSPF allows nonzero concentrations in the
subsurface inflow to the stream. In the present case, the
hydrology models indicate that interflow and shallow‐
aquifer inflow contribute between 87% and 98% of the flow
to the receiving stream, so this difference in model formula‐
tion has significant implications. Secondly, in comparing the
conditional likelihood distributions of the HSPF and SWAT
fate and transport parameters in figure 3, it is clear that the
predicted concentrations are much more sensitive to the
SWAT parameters than the HSPF parameters. This gives an
indication that the SWAT process equations (and associated
parameters) might provide a more precise description of FC
fate and transport process in the present case.

To further explore this difference, it is instructive to sepa‐
rate the contributions of terrestrial nonpoint sources and di‐
rect nonpoint sources to the bacteria concentrations in the
receiving stream. The contribution of terrestrial sources can
be extracted by putting the direct nonpoint‐source mass flux
equal to zero and calculating the stream concentrations of
bacteria,  and the contributions of direct nonpoint sources can
be determined by subtracting the concentrations derived
from only terrestrial sources from the concentrations result‐
ing from both terrestrial and direct nonpoint sources (i.e., the
calibrated model). The cumulative probability distribution of
concentrations resulting from only direct nonpoint sources is
compared with the cumulative probability distribution of
concentration from both direct and terrestrial nonpoint
sources in figure 5a for HSPF and figure 5b for SWAT. In con‐
trasting these results, the key consideration is that the direct
nonpoint source cumulative distribution represents the dis‐
tribution of stream concentrations that could be expected if
all terrestrial sources were eliminated. With this in mind, fig‐
ure 5a indicates that significant reductions in both median
and 90‐percentile stream concentrations could be obtained
by reducing the contributions of terrestrial bacteria sources,
while figure 5b indicates that only very small reductions in
median and 90‐percentile stream concentrations could be
achieved by reducing (or even eliminating) the contributions
of terrestrial sources. Since the SWAT process equations give
much better predictions of the observed bacteria concentra‐
tions in the receiving stream, it is reasonable to conclude that
figure 5b is more representative of field conditions, and that
development of strategies to reduce bacteria concentrations
in the receiving stream should focus on in‐stream sources that
cause relatively continuous bacteria input to the stream. This
key result could only have been obtained by comparing the
relative performance of two fate and transport process mod‐
els and would have been missed if only the HSPF model were
used in the analysis.

A second salient feature of figures 5a and 5b is the com‐
parison of the cumulative distribution of the measurements
(using the Weibull formula) represented by the filled circles
and the cumulative distribution of the modeled data on the

Figure 5. Contribution of terrestrial sources to stream bacteria.

same days as the measurements, represented by the open
circles. Figures 5a and 5b show fair agreement given by
HSPF and good agreement given by SWAT. For the SWAT
model, it is particularly informative to compare the distribu‐
tion of modeled concentrations on measurement days (which
is in good agreement with observations) with the distribution
of modeled concentrations on all days of the simulation.
Based on this comparison, it is clear that median and
90‐percentile  values of the modeled concentrations for the set
of measurement days underestimate the median and
90‐percentile  values of the modeled concentrations, respec‐
tively, for the set of all days. A likely reason for this is that
sampling days tend to be times of low rainfall/runoff, thereby
missing the high concentrations that result from large surface
runoff events and significantly biasing the estimated cumula‐
tive probability distribution of concentrations. This phenom‐
enon has also been previously observed by Baffaut (2006) in
a watershed in Missouri. The possible significant bias intro-
duced by using measured data to estimate the cumulative
probability distribution of concentrations in the stream is par‐
ticularly troublesome because compliance with percentile‐
based water‐quality standards is usually assessed based on
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measurements, and actual percentile concentrations are like‐
ly to be higher than those estimated from measurements.

Finally, it is useful to compare the maximum‐likelihood
process parameters related to terrestrial loading and direct
loading derived from the HSPF and SWAT models.
Maximum‐likelihood  HSPF terrestrial loading is in the range
of 0.25 × 108 to 1.45 × 108 cfu ha-1 d-1 for agricultural and
forest land uses, while maximum‐likelihood SWAT terres‐
trial loading is in the range 2.0 × 108 to 22.1 × 108 cfu ha-1

d-1. Although these maximum‐likelihood terrestrial loading
estimates differ by an order of magnitude, they provide a rea‐
sonable level of confidence in pinning down the existing
bacteria loading to be in the range of 107 to 109 cfu ha-1 d-1.
The maximum‐likelihood direct nonpoint‐source loading
given by HSPF is 1.7 × 1010 cfu d-1, and SWAT gives 3.6 ×
1010 cfu d-1, providing strong support to the assertion that ex‐
isting direct loading from in‐stream sources is in the fairly
narrow range of 2 × 1010 to 4 × 1010 cfu d-1. This provides
an instance where using a multi‐model approach gives great‐
er confidence in estimated source loadings than could be de‐
rived from using a single model. Since the area of the
catchment is 15.6 km2 (= 1560 ha), terrestrial loading is esti‐
mated to be in the range of 1010 to 1013 cfu d-1, compared to
in‐stream loadings on the order of 1010 cfu d-1. The predomi‐
nant sources of fecal coliform in the watershed are likely as‐
sociated with wildlife, since most of the forested lands in
catchment K are heavily populated with wildlife, and the
catchment is commonly used as a recreational hunting re‐
serve. The most common wildlife species is deer, but the area
also has relatively high populations of wild turkeys, geese,
raccoons, and migratory ducks. Most the game animals in‐
habit the riparian areas along the stream banks and likely con‐
tribute to in‐stream fecal coliform loadings.

MODEL AVERAGING
Model averaging is an approach in which a weighted aver‐

age of model output is used as the actual predictor (Claeskens
and Hjort, 2008). Although this approach has been applied
and tested in several hydrologic studies (e.g., Ajami et al.,
2006), it has not to date been applied to predicting contami‐
nant levels using watershed‐scale models. Considering HSPF
and SWAT as competing models, a model‐averaged predic‐
tion can be expressed in the form:

 iii SaaHP )1( −+=  (7)

where Pi is the prediction at time step i; Hi and Si are the corre‐
sponding estimates by HSPF and SWAT respectively; and a
is a weighting factor between zero and one. If the Nash‐
Sutcliffe efficiency (NSE) is used to measure the perfor‐
mance of the combined models, then:
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where Mi is the measurement at time step i, and M  is the aver‐
age of the N measurements. The value of a that maximizes
NSE can be calculated by taking the derivative of equation�8,
which yields:
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which guarantees that by taking a as specified by equation 9,
the value of NSE will be maximized and be greater than the
value of NSE derived from either model by itself. Applying
equation 9 to HSPF and SWAT simulations give a = 0.83 for
daily averaged flows, a = 0.56 for monthly averaged flows,
and a = 0.09 for bacteria concentrations. These values of a
provide a direct measure of the relative abilities of the com‐
peting models to simulate the observed data. The NSE ob‐
tained by using model‐averaged predictions are shown in
table 3, where it is clear that the gain in best model perfor‐
mance is relatively small, although, strictly speaking, the
predictions are all improved by model averaging. These re‐
sults indicate that the real benefit to using multiple models
might not be in the fact that improved performance is
achieved by model averaging, but that using multiple models
has the potential to identify a preferred model that might
demonstrate much better performance than a single model,
with no downside if the second model proves to be less accu‐
rate. For example, if it was decided a priori to use the HSPF
model, then in the present case an excellent description of the
hydrology and a fair description of the water quality would
be realized; by using the second model (SWAT), the potential
for a much‐improved description of the water quality is real‐
ized.

SUMMARY AND CONCLUSIONS
The development and implementation of TMDLs require

the quantitative determination of both terrestrial and direct
loadings on impaired waters, the sources of loading, and the
relationships between loading reductions and contaminant
concentrations in the impaired waters. To these ends, the
watershed‐scale models HSPF and SWAT are the most wide‐
ly used in the U.S., and conventional practice is to a priori
select one of these models in any particular application. The
results presented in this article have demonstrated the added
dimensionality that can be achieved by using multiple mod‐
els to predict the fate and transport of bacteria at the wa‐
tershed scale. Both HSPF and SWAT were applied to the
15.6�km2 catchment K of the Little River Experimental Wa‐
tershed (LREW) in Georgia. It was demonstrated that, over
the seven‐year period from 1996 to 2002, HSPF provided a
much more accurate description of daily averaged flows with
a Nash‐Sutcliffe efficiency (NSE) of 0.87, both models per‐
formed comparably in describing monthly averaged flows
with an NSE of around 0.89, and SWAT provided a much
more accurate description of fecal coliform concentrations
with an NSE of 0.73 compared to 0.33 for HSPF.

The relative performance of the models in predicting daily
averaged flows is expected, since the HSPF model uses hour‐
ly time steps and is capable of resolving the response of the
watershed to storms with subdaily time scales, while SWAT
uses daily time steps and is unable to accurately resolve re‐
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sponses to individual storms. The ability of SWAT to perform
much better than HSPF in predicting fecal coliform con‐
centrations in the receiving stream indicates that, in this par‐
ticular watershed, the SWAT process equations are more
representative  of the watershed‐scale fate and transport than
the HSPF process equations. As a consequence, it can reason‐
ably be concluded that elevated levels of fecal coliform in the
receiving stream are primarily due to direct in‐stream sources
of bacteria, and that terrestrial sources distributed throughout
the watershed have relatively little effect on bacteria levels
in the stream, except under high rainfall/runoff conditions.
This source characterization could not be achieved by using
only the HSPF model, which indicates a much greater con‐
tribution of terrestrial sources, which is discounted due to the
much poorer performance of HSPF in predicting stream con‐
centrations of bacteria. A model‐averaging approach in
which a weighted‐average of the HSPF and SWAT predic‐
tions was used to predict flows and bacteria concentrations in
the receiving stream was investigated. It was shown analyti‐
cally that model weights can be determined such that the NSE
of the combined models will be greater than that of either of
the models taken individually. This model‐averaging ap‐
proach was implemented; however, the marginal improve‐
ments in best-model NSE were relatively small.

Collectively, the results presented in this article indicate
that the primary benefit in using multiple models to simulate
watershed‐scale fate and transport is the potential to identify
a model that might provide a significant improvement in pre‐
diction capability over a single model, with no downside if
the second model proves to be less accurate. The fate and
transport processes incorporated in the more accurate model
can then be identified as more representative of the catch‐
ment under investigation, a result that is particularly useful
in developing implementation plans for TMDLs.
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